
Spoofing Detection in the Physical Layer with
Graph Neural Networks

Tien Ngoc Ha
Department of ICT, University of Agder

Grimstad, Norway
tien.n.ha@uia.no

Daniel Romero
Department of ICT, University of Agder

Grimstad, Norway
daniel.romero@uia.no

Abstract—In a spoofing attack, a malicious actor impersonates
a legitimate user to access or manipulate data without authoriza-
tion. The vulnerability of cryptographic security mechanisms to
compromised user credentials motivates spoofing attack detection
in the physical layer, which traditionally relied on channel
features, such as the received signal strength (RSS) measured by
spatially distributed receivers or access points. However, existing
methods cannot effectively cope with the dynamic nature of
channels, which change over time as a result of user mobility and
other factors. To address this limitation, this work builds upon the
intuition that the temporal pattern of changes in RSS features can
be used to detect the presence of concurrent transmissions from
multiple (possibly changing) locations, which in turn indicates
the existence of an attack. Since a localization-based approach
would require costly data collection and would suffer from
low spatial resolution due to multipath, the proposed algorithm
employs a deep neural network to construct a graph embedding
of a sequence of RSS features that reflects changes in the
propagation conditions. A graph neural network then classifies
these embeddings to detect spoofing attacks. The effectiveness
and robustness of the proposed scheme are corroborated by
experiments with real-data.

Index Terms—Graph neural networks, spoofing attack, physi-
cal layer security, deep learning, cybersecurity, wireless networks.

I. INTRODUCTION

The prevalence of wireless communications has engendered
a panoply of security threats, including the unauthorized
interception of private data, disruptions to remote services, and
user impersonation. Among these pernicious threats, spoofing
attacks pose a particularly troublesome challenge since, in
these attacks, malevolent actors intercept and manipulate data
originally intended for legitimate users [1]–[4]. The detection
and mitigation of these attacks are pivotal for data security.
Although cryptographic techniques have traditionally been em-
ployed across various communication layers to fortify security,
the potential access of attackers to the credentials of legitimate
users introduces a serious vulnerability. Consequently, the
research community has increasingly focused on detecting
spoofing attacks in the physical layer.

For instance, [5]–[8] leverage transmitter hardware imper-
fections, such as carrier frequency offset (CFO), in-phase and

This research has been funded in part by the Research Council of Norway
under IKTPLUSS grant 311994.

The code and pre-trained models are available at https://github.com/uiano/
gnn spoofing detection.

quadrature (I/Q) offset, and I/Q imbalance, to verify user iden-
tity. Regrettably, these methodologies necessitate knowledge
of the communication protocol and may prove ineffective
in the face of environmental changes, such as fluctuations
in temperature [6]. These constraints are somehow mitigated
in [9]–[11], which rely on angle of arrival (AoA) and time
difference of arrival (TDoA) features, and in [12], where a
neural network is trained using signal-to-noise ratio (SNR)
traces. Nonetheless, these approaches still demand synchro-
nization and/or knowledge of the communication protocol. In
contrast, techniques reliant on received signal strength (RSS)
measurements do not require knowledge of the communication
protocol or signal decoding, thus significantly augmenting
their generality and applicability for detecting spoofing at-
tempts [13]–[17]. The predominant approach in this context
involves applying clustering primitives to RSS measurements
collected by multiple receivers, such as the access points of a
WiFi network [13], [18], [19]. By exploiting the dependence
of RSS signatures on the transmitter locations, an attack is
detected if transmissions with the same user identifier are
found to originate at different locations. Consequently, this
approach results in false alarms when the channel conditions
change, as for example when a legitimate user moves.

To remedy this limitation, the key realization in this work
is that it is possible to tell spoofing from motion and other
effects by analyzing the temporal changes in RSS features.
To illustrate this idea, consider a network that sequentially
receives frames from locations denoted as A, B, C, and D. If
all these locations are distinct, it is natural to ascribe these
variations to the movement of the legitimate user. In contrast,
if the received transmissions alternate between points A and
B in a pattern such as A, B, A, B, A, B, etc., it is more likely
that one user is transmitting from location A and another from
location B, which indicates the presence of an attack. To the
best of our knowledge, the work at hand is the first to exploit
this kind of information.

To this end, this paper introduces a spoofing attack detection
scheme where a graph embedding is constructed to capture
the pattern of changes in RSS features over a sequence of
frames. Then, a graph neural network (GNN) classifies such
graph embeddings as either corresponding to an attack or to
legitimate user activity, which may include user movement.
The graph is constructed by utilizing a position-change de-

https://github.com/uiano/gnn_spoofing_detection
https://github.com/uiano/gnn_spoofing_detection

tector (PCD) that determines whether a given pair of frames
was transmitted from different locations. Since changes in the
RSS measurements corresponding to different frames may be
caused either by the movement of the transmitter or by the
variability due to the finite number of samples used in the
computation of these measurements, the PCD is designed as a
deep neural network that detects position changes by implicitly
learning the distribution of RSS estimates from signal samples.
The proposed scheme can be readily deployed due to the
simplicity of the procedure for collecting the required data
set. Specifically, RSS features must be collected at different
locations but those locations need not be recorded.

The rest of the paper is structured as follows. Sec. II for-
mulates the problem. Sec. III presents the proposed spoofing
detection scheme. Sec. IV presents an extensive performance
evaluation using real data. Finally, Sec. V concludes the paper.

II. PROBLEM FORMULATION

Let X ⊂ R3 comprise the coordinates of all points in
the spatial region of interest, where both legitimate users and
attackers are located. A transmitter at x ∈ X , which can be
the legitimate user or an attacker, sends a signal s(t), where t
denotes time. This signal, modeled as an unknown wide-sense
stationary stochastic process, is received by N receivers, such
as the access points or base stations of a wireless network. Let
hn(x, t) denote the impulse response of the channel between
the transmitter and the nth receiver, which is assumed to be
time-invariant over the duration of a frame. The received signal
at the nth receiver is given by

rn(x, t) = hn(x, t) ∗ s(t) + zn(t), (1)

where ∗ denotes convolution and zn(t) is additive white
Gaussian noise (AWGN) with variance σ2 and independent of
s(t). Thus, one can define the received signal strength (RSS)
fn(x) := E|rn(x, t)|2, where E denotes expectation.

To estimate the RSS of a frame received by the nth receiver,
consider a set of K samples Kn := {rn(x, t+kT)}Kk=1, where
T is the sampling period and t is the time when the frame
begins. The RSS can be estimated as

f̂n(x) :=
1

K

K∑
k=1

|rn(x, t+ kT)|2. (2)

If rn(x, kT) is ergodic for each x, it follows that f̂n(x)
converges to fn(x) as K → ∞.

For notational convenience, the RSS values estimated by
all receivers are collected into a feature vector, generically
represented by f̂(x) := [f̂1(x), . . . , f̂N (x)]⊤. Note that since
K is finite, measuring the RSS I times for location x yields
I different estimates of f(x) := [f1(x), . . . , fN (x)]⊤. These
estimates will be denoted as f̂ (i)(x), i = 1, . . . , I .

To introduce the notation for frame sequences, let x[j]
denote the location of the user that transmits the jth frame at
the moment of transmitting that frame and let f̂ [j] := f̂(x[j]).
The feature vectors corresponding to a sequence of J frames
are collected into matrix F̂ := [f̂ [1], . . . , f̂ [J]]. Out of these

15 20 25 30 35 40
y [m]

90

85

80

75

70

65

60

55

50

RS
S

[d
B

un
its

]

AP 0
AP 1
AP 2

Fig. 1: RSS measurements along a line vs. their y-coordinate.
It is observed that small variations in the y-coordinate often
result in larger RSS changes than large variations in the y-
coordinate. For example, the difference between y = 24 and
y = 29 is around 24 dB, whereas the difference between y =
16 and y = 40 is less than 5 dB. This is caused mainly by
multipath and suggests that accurately estimating the position
from RSS measurements is not generally possible.

J frames, JL belong to the legitimate user and JA to the
attacker, where J = JL + JA. The set of indices of the
frames belonging to the legitimate user is represented by
JL ⊂ {1, . . . , JL} whereas the set of indices of the frames
belonging to the attacker is represented by JA ⊂ {1, . . . , JA}.

Given F̂ , the problem is to decide between the following
hypotheses: {

H0 : JA = ∅
H1 : JA ̸= ∅. (3)

To this end, a dataset comprising the feature vectors D :=
{f̂ (i)(xm),m = 1, . . . ,M, i = 1, . . . , I} is given, where M
is the number of distinct measurement locations, i.e. xm ̸=
xm′ ∀m ̸= m′.

III. SPOOFING DETECTION FROM RSS FEATURES

Evidently, if the time between consecutive frames in F̂ is
too long, then the vectors f̂ [j] may originate at highly distant
locations due to user movement, even in the absence of attacks.
As a result, f̂ [j] may be highly different from f̂ [j − 1] and
f̂ [j + 1]. Since this would also be the case in the presence
of an attack, solving problem (3) becomes challenging as the
distributions of F̂ under both hypotheses are highly similar.
Therefore, it becomes imperative to introduce the following
assumption:

Assumption 1: The frame rate is high relative to the speed
of the users.

In other words, if f̂ [j] and f̂ [j + 1] correspond to the same
user, they will be reasonably similar.

In view of Assumption 1, one could consider a strategy to
tackle problem (3) where the locations x[j] are first estimated
based on f̂ [j], j = 1, . . . , J , and an attack is declared if

multiple transmissions are concurrently received from distant
(possibly moving) users. However, this approach is not viable
first because the data given in the problem formulation of
Sec. II does not allow a reasonably accurate localization of
the transmitters. Indeed, if the locations x[j] associated with
the vectors in D were given, one could attempt to estimate
the locations associated with the frames in F̂ , for instance via
fingerprinting-based localization [20], [21]. However, the error
of such approaches is typically in the order of 10 m in indoor
environments (see e.g. [20]), which would hinder detecting
attacks where the attacker is relatively near the legitimate user.
Fig. 1 illustrates why this is the case. Besides, collecting a data
set where the positions of the measurement locations need to
be recorded is highly costly since it would generally require
the deployment of an auxiliary localization system, the use a
mobile robot, or to manually measure the spatial coordinates
of all measurement locations.

For this reason, the proposed scheme does not attempt
to estimate the transmitter locations. Instead, it exploits the
pattern of dissimilarities between the feature vectors f̂ [j].
This is accomplished in two steps: First, each pair of vectors
(f̂ [j], f̂ [j′]) is compared as described in Sec. III-A. Given
these comparisons, a decision is made on the presence of an
attack based on a graph embedding, as described in Sec. III-B.

A. Position-change Detection

This section presents a PCD, which is a detector that
determines whether two given frames where transmitted from
the same location. Specifically, given two feature vectors
f̂ [j] and f̂ [j′] respectively corresponding to (possibly equal)
locations x[j] and x[j′], the goal is to distinguish between the
following hypotheses:{

HPCD
0 : x[j] = x[j′]

HPCD
1 : x[j] ̸= x[j′].

(4)

A PCD is a function that maps a pair of feature vectors to a
hypothesis, i.e., dPCD : RN × RN → {HPCD

0 ,HPCD
1 }.

To properly address (4), it is useful to consider the compo-
nents behind the dissimilarity between f̂ [j] and f̂ [j′]. First,
two feature vectors f̂ [j] and f̂ [j′] are naturally different
because K is finite, even when x[j] = x[j′]. Second, f̂ [j]
and f̂ [j′] will be different when x[j] ̸= x[j′] because of
the different propagation phenomena undergone by the signals
propagating from either location to the receivers. This includes
effects such as path loss, shadowing, and fading. The latter is
caused by multipath and dominates in indoor environments;
see for example Fig. 1. The complexity of these phenomena
calls for a PCD that learns to solve (4) in a data-driven fashion.
To this end, in this work, dPCD is implemented using a DNN,
as described next.

1) Architecture: Following standard practice, the detector
is designed to decide HPCD

1 when a detection statistic T PCD :
RN × RN → R exceeds a predefined threshold, and HPCD

0

otherwise. In this way, the problem of designing dPCD becomes
that of designing a function T PCD.

In principle, this function could be directly implemented
as a DNN. However, such a simple approach would result in
a non-commutative T PCD, that is, T PCD(f̂ , f̂ ′) will generally
differ from T PCD(f̂ ′, f̂), which is clearly undesirable. To
remedy this issue, a symmetrization technique will be adopted.
Specifically, T PCD will be implemented based on an auxiliary
function T̃ PCD by setting T PCD(f̂ , f̂ ′) := (T̃ PCD(f̂ , f̂ ′) +
T̃ PCD(f̂ ′, f̂))/2. Observe that this implies that T PCD(f̂ , f̂ ′) =
T PCD(f̂ ′, f̂) regardless of T̃ PCD. Thereby, T̃ PCD can be safely
implemented as a DNN.

The architecture of the subnetwork T̃ PCD is detailed next.
Since T̃ PCD is concerned with dissimilarities, it is nat-
ural to include an initial non-trainable layer that yields
10 log10[f̂ , f̂

′, f̂−f̂ ′] when the input to the network is [f̂ , f̂ ′].
This facilitates learning from moderate-sized datasets. This
layer is followed by three hidden fully-connected layers with
512 neurons and leaky ReLU activations [22]. The output layer
contains a single neuron with a linear activation.

2) Data set: To train T PCD, a dataset comprising pairs of
vectors from D is constructed. The feature vectors in P of
these pairs correspond to the same transmitter location. In the
remaining P pairs, they correspond to different transmitter
locations.

Specifically, the pairs of the first kind are generated for p =
1, . . . , P by first drawing mp uniformly at random from the set
{1, . . . ,M}. Then, ip and i′p are drawn uniformly at random
without replacement from {1, . . . , I}. This process results in
the set Ds := {(f̂ (ip)(xmp), f̂

(i′p)(xmp)), p = 1, . . . , P} ⊂
RN ×RN . To generate the pairs of the second kind, draw mp

and m′
p uniformly at random without replacement from the

set {1, . . . ,M} for p = 1, . . . , P . Drawing ip and i′p as before
yields Dd := {(f̂ (ip)(xmp), f̂

(i′p)(xmp′)), p = 1, . . . , P} ⊂
RN × RN . The DNN can then be trained on the dataset
Ds ∪ Dd.

Recall from Sec. II that obtaining D involves collecting
the I RSS estimates f̂ (i)(xm), i = 1, . . . , I , for each of
the M locations xm, m = 1, . . . ,M . A simpler approach
may be to collect a single estimate with a large K so that it
approximately equals f(xm) and then generate the f̂ (i)(xm)
synthetically. The procedure is described next for the case
where rn(x, t) is approximately Gaussian distributed, which
would be the case e.g. if s(t) is an orthogonal frequency
division multiplexing (OFDM) signal; see e.g. [23].

To this end, express rn(x, t) as rn(x, t) = fn(x)ϵn(x, t),
where fn(x) is the true RSS and ϵn(x, t) is a circularly
symmetric zero-mean Gaussian random variable with unit
variance uncorrelated over t. Then, (2) becomes

f̂n(x, t) =
|fn(x)|2

K

K∑
k=1

|ϵn(x, t+ kT)|2 (5a)

=
|fn(x)|2

2K

K∑
k=1

([√
2Re{ϵn(x, t+ kT)}

] 2
+
[√

2Im{ϵn(x, t+ kT)}
]2)

. (5b)

0 10 20 30
Frame index

0

2

4
Re

gi
on

 in
de

x
(a)

0 10 20 30
Frame index

0.0

0.5

1.0

Re
gi

on
 in

de
x

(b)

0 10 20 30
Frame index

0

2

4

Re
gi

on
 in

de
x

(c)

0 10 20 30
Frame index

0

5

Re
gi

on
 in

de
x

(d)

Fig. 2: Examples of region sequences without an attack ((a))
and with an attack ((b)-(d)).

It follows that 2Kf̂n(x, t)/|fn(x)|2 is a χ2 random variable
with 2K degrees of freedom. Thus, I estimates f̂ (i)

n (x, t), i =
1, . . . , I , can be obtained by generating I realizations of such
a χ2 random variable.

3) Training: The DNN is trained using a binary cross-
entropy loss function. Within the dataset, a subset comprising
M val validation points is reserved for validation, while the
remainder M tr = M −M val are used for training.

B. Graph Neural Network based Spoofing Detection

The decisions of the PCD for all pairs of frames will
be used next to detect spoofing attacks. To intuitively un-
derstand why this is possible, recall from Sec. III-A that
the PCD decides HPCD

1 when the dissimilarity between the
given feature vectors f [j] and f [j′] owes to the difference
between the propagation phenomena experienced at x[j] and
x[j′]. In other words, if x[j] and x[j′] are so close that
both points see similar propagation conditions to all receivers,
the PCD decides HPCD

0 . For didactical purposes, it is useful
to split the space into propagation regions and assume that
dPCD(f [j],f [j′]) = HPCD

0 if x[j] and x[j′] belong to the same
region and dPCD(f [j],f [j′]) = HPCD

1 otherwise. Using the
decisions of the PCD, one can therefore assign each frame in
the given sequence to a region.

This assignment is illustrated in Fig. 2, which sheds light
into why it is possible to solve (3) using the decisions of
the PCD. Fig. 2a shows an example where all frames are
generated by a single moving user. Due to Assumption 1,
groups of consecutive frames are declared by the PCD to
belong to the same region. In turn, Fig. 2b depicts the case
where two transmissions are concurrently taking place from
different regions, which indicates the presence of an attack.
Finally, Fig. 2c and Fig. 2d respectively correspond to the
case where one or both of the concurrently transmitting users
move.

It is important to note that the above considerations are pro-
vided to develop intuition, but in practice do not hold exactly.
In particular, the decisions of the PCD will not generally be

transitive, that is, it may hold that dPCD(f [j],f [j′]) = HPCD
0

and dPCD(f [j′],f [j′′]) = HPCD
0 but dPCD(f [j],f [j′′]) =

HPCD
1 . However, this may approximately hold. For this reason,

it is useful to construct a graph G where the j-th node
corresponds to f [j] and there is an edge between nodes j
and j′ if dPCD(f [j],f [j′]) = HPCD

0 . Clearly, since dPCD is
commutative (cf. Sec. III-A1), this graph is undirected.

Clearly, if the space could be split into propagation regions,
as discussed earlier, then this graph could be partitioned into
one component per region and the presence of an attack would
be characterized by an alternating pattern between components
as in Fig. 2b-2d. However, since this is not exactly the case,
it makes sense to train a GNN to detect attacks based on G in
a data-driven fashion.

1) Architecture: A GNN [24] exploits the relation between
node features and the graph topology by performing a se-
quence of message-passing steps or layers, where the features
associated with a node at layer l depend on the features of that
node and the neighboring nodes at layer l− 1. Specifically, if
ϕ

(l)
ν represents the features of node ν at layer l, then

ϕ(l)
ν = G

(l)
1

(
ϕ(l−1)

ν ,
⊕

ν′∈Nν

G
(l)
2 (ϕ(l−1)

ν ,ϕ
(l−1)
ν′)

)
, (6)

where G
(l)
1 and G

(l)
2 are conventional DNNs, N ν contains the

set of neighbors of node ν, and
⊕

is an aggregation operator
such as a summation or maximum operator. The output of
the GNN can be computed by another aggregation operator
applied to the concatenation of the vectors ϕ

(L)
ν for all ν,

where L is the number of layers.
For the problem at hand, a test statistic is obtained with

a GNN and then compared to a threshold to decide between
H0 and H1. In the adopted architecture, L = 3 layers and
functions G(l)

1 and G
(l)
2 are implemented as single-layer fully-

connected DNNs with 64 output neurons and ReLU activa-
tions. The operator

⊕
is a summation whereas the output of

the GNN is obtained by averaging the features of all nodes at
the last layer and applying a trainable affine transformation.
Since the order of the nodes is relevant (cf. Fig. 2), the features
in the first layer are set so that ϕ(1)

ν equals the index of node ν.
2) Dataset: To train the GNN, realizations of G must be

generated under both H0 and H1. This involves generating
frame sequences F̂ under both hypotheses. Under H0, the
trajectory x(t) of the (single) user is generated as follows.
First, obtain the time duration of the frame sequence, given
by JRJ, where RJ is the number of frames per second. The
length ∆x of the trajectory is therefore ∆x = JRJv, where
v is the speed of the user. Then, randomly draw a straight
line segment of length ∆x in R. The trajectory is therefore
x(t) = x̃ + dvt, where x̃ is the starting point and d is the
unit direction vector of the line. For each j, f̂ [j] is obtained
by randomly selecting one of the vectors in D that correspond
to the location that lies closest to x(j/RJ).

Under H1, the frame sequences of both users are generated
following the above procedure. Then, the frame sequence
f̂1[0], . . . , f̂1[J − 1] of user-1 is merged with the frame

0.0 0.2 0.4 0.6 0.8 1.0
Pfa

0.0

0.2

0.4

0.6

0.8

1.0
Pd

GSD
DBSCAN
HDBSCAN
OPTICS
BIRCH

Fig. 3: ROC curves of the proposed algorithm and the bench-
marks (10 frames/s, J = 30, K = 150, N = 5).

sequence f̂2[0], . . . , f̂2[J − 1] of user-2 into a sequence
f̂ [0], . . . , f̂ [J − 1] where either f̂ [j] = f̂1[j] or f̂ [j] = f̂2[j],
both with probability 1/2 and independently along j.

3) Training: The GNN model is trained using a binary
cross-entropy loss function.

IV. PERFORMANCE EVALUATION

This section assesses the performance of the proposed
scheme using the dataset from [20], which contains RSS
measurements of 992 WiFi access points at 4846 locations
across 4 floors. To ensure a sufficient spatial density, only the
measurements collected at M = 648 locations on the first
floor are used. 20% of them are reserved for testing. Since
each measurement location lies out of the range of most of
the access points, the N = 5 access points that are measured
at the greatest number of the selected locations are considered.
The procedure described in Sec. III-A2 is then used to generate
I = 1000 feature vectors for each location. A link to the code
is provided on the first page.

The proposed algorithm, referred to as GNN-based Spoofing
Detection (GSD), is compared against four benchmarks which,
along the lines of [13], [18], [19], rely on clustering the
feature vectors. This is intuitive as the frames transmitted
from the same location will tend to be clustered together.
The number of clusters is then used as a test statistic and
the threshold is obtained to attain a target probability of false
alarm (PFA). The considered clustering algorithms include
density based spatial clustering of applications with noise
(DBSCAN) [25], hierarchical DBSCAN (HDBSCAN) [26],
ordering points to identify the clustering structure (OPTICS)
[27], and balanced iterative reducing and clustering using
hierarchies (BIRCH) [28].

Fig. 3 depicts the receiver operating characteristic (ROC)
curves [29, Ch. 3] of GSD and the benchmarks. It is seen that
GSD results in a significantly higher probability of detection
(PD) for each PFA.

Fig. 4 analyzes the influence of the speed of the users in
the PD for a given PFA = 0.1 for the compared algorithms.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Speed (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

Pd

GSD
DBSCAN
HDBSCAN
OPTICS
BIRCH

Fig. 4: Pd vs speed of the proposed algorithm and the
benchmarks for a fixed probability of false alarm PFA (10
frames/s, J = 30, K = 150, N = 5, PFA = 0.1).

0 10 20 30 40 50 60 70 80
Number of frames

0.0

0.2

0.4

0.6

0.8

1.0

Pd
GSD
DBSCAN
HDBSCAN
OPTICS
BIRCH

Fig. 5: Pd vs number of frames of the proposed algorithm and
the benchmarks for a fixed probability of false alarm PFA (10
frames/s, K = 150, N = 5, PFA = 0.1).

Interestingly, speed seems to positively impact the PD of
all algorithms, especially those based on clustering. This is
because the the number of clusters per user increases with the
speed and, therefore, the test statistic will tend to be more
different between hypotheses.

Fig. 5 investigates the impact of J on the detection perfor-
mance. As expected, PD tends to increase with J . However,
a wiggling effect is observed for the benchmarks. This does
not vanish even if the number of Monte Carlo iterations is
increased. The cause is the discrete nature of the test statistic
of the benchmarks.

Finally, Fig. 6 analyzes how PD evolves as a function of K.
It is remarkable that GSD attains a very large PD even for a
small K, which suggests that the PCD successfully learned to
distinguish the two sources of variability in the feature vectors
described in Sec. III-A.

0 25 50 75 100 125 150 175
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0
Pd

GSD
DBSCAN
HDBSCAN
OPTICS
BIRCH

Fig. 6: PD vs number of frames of the proposed algorithm and
the benchmarks for a fixed probability of false alarm PFA (10
frames/s, J = 30, N = 5, PFA = 0.1).

V. CONCLUSION

This work considered the problem of detecting spoofing
attacks in the physical layer, which is motivated by the
vulnerability of cryptographic techniques when the credentials
of the legitimate user are compromised. Unfortunately, prior
schemes based on RSS measurements raise false alarms in the
presence of channel changes or user movement. To remedy this
limitation, this work introduced a deep learning detector robust
to these effects. Since localization-based approaches would
suffer from a low spatial resolution due to multipath effects,
a position change detector based on a deep neural network
is used to build a graph embedding of the RSS features.
The temporal pattern of changes in the propagation conditions
captured by this embedding is then learned by a GNN, which
then decides on the presence of a spoofing attack. Empirical
evaluation with real-world data showcases the effectiveness of
this scheme as well as its robustness to the mobility of the
user and attacker.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a
public dataset,” IEEE Commun. Surveys & Tutorials, vol. 18, no. 1,
pp. 184–208, 2015.

[2] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,
“Why MAC address randomization is not enough: An analysis of Wi-
Fi network discovery mechanisms,” in ACM on Asia conf. computer
commun. security, 2016, pp. 413–424.

[3] J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske, L. Foppe,
T. Mayberry, E. C. Rye, B. Sipes, and S. Teplov, “Handoff all your
privacy: A review of apple’s bluetooth low energy continuity protocol,”
arXiv preprint arXiv:1904.10600, 2019.

[4] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in ACM Conf.
Comput. commun. security, 2011, pp. 75–86.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device
identification with radiometric signatures,” in Int. Conf. Mobile Comput.
Netw., 2008, pp. 116–127.

[6] H. Givehchian, N. Bhaskar, E. R. Herrera, H. R. L. Soto, C. Dameff,
D. Bharadia, and A. Schulman, “Evaluating physical-layer BLE location
tracking attacks on mobile devices,” in IEEE Symp. Security Privacy.
IEEE, 2022, pp. 1690–1704.

[7] P. Liu, P. Yang, W.-Z. Song, Y. Yan, and X.-Y. Li, “Real-time
identification of rogue WiFi connections using environment-independent
physical features,” in IEEE INFOCOM 2019-IEEE Conf. Computer
Commun. IEEE, 2019, pp. 190–198.

[8] T. D. Vo-Huu and G. Noubir, “Fingerprinting Wi-Fi devices using
software defined radios,” in ACM Conf. Security & Privacy Wireless
Mobile Netw., 2016, pp. 3–14.

[9] J. Xiong and K. Jamieson, “Secureangle: Improving wireless security
using angle-of-arrival information,” in ACM SIGCOMM Workshop Hot
Topics Netw., 2010, pp. 1–6.

[10] J. Xiong and K. Jamieson, “Securearray: Improving WiFi security with
fine-grained physical-layer information,” in Annual Int. Conf. Mobile
comput. & netw., 2013, pp. 441–452.

[11] X. Shi, B. D. O. Anderson, G. Mao, Z. Yang, J. Chen, and Z. Lin,
“Robust localization using time difference of arrivals,” IEEE Signal
Process. letters, vol. 23, no. 10, pp. 1320–1324, 2016.

[12] N. Wang, L. Jiao, P. Wang, W. Li, and K. Zeng, “Machine learning-based
spoofing attack detection in mmwave 60GHz IEEE 802.11 ad networks,”
in IEEE Conf. Computer Commun. IEEE, 2020, pp. 2579–2588.

[13] Y. Chen, W. Trappe, and R. P. Martin, “Detecting and localizing wireless
spoofing attacks,” in Annual IEEE Commun. Society Conf. sensor, mesh
ad hoc commun. netw. IEEE, 2007, pp. 193–202.

[14] J. Yang, Y. Chen, W. Trappe, and J. Cheng, “Detection and localization
of multiple spoofing attackers in wireless networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 1, pp. 44–58, 2012.

[15] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “PHY-layer spoofing
detection with reinforcement learning in wireless networks,” IEEE
Trans. Veh. Technol., vol. 65, no. 12, pp. 10037–10047, 2016.

[16] K. Zeng, K. Govindan, D. Wu, and P. Mohapatra, “Identity-based attack
detection in mobile wireless networks,” in IEEE INFOCOM. IEEE,
2011, pp. 1880–1888.

[17] B. Alotaibi and K. Elleithy, “A new MAC address spoofing detection
technique based on random forests,” Sensors, vol. 16, no. 3, pp. 281,
2016.

[18] M. T. Hoang, Y. Zhu, B. Yuen, T. Reese, X. Dong, T. Lu, R. Westendorp,
and M. Xie, “A soft range limited k-nearest neighbors algorithm for
indoor localization enhancement,” IEEE Sensors J., vol. 18, no. 24, pp.
10208–10216, 2018.

[19] A. Sobehy, E. Renault, and P. Mühlethaler, “CSI-MIMO: K-nearest
neighbor applied to indoor localization,” in IEEE Int. Conf. Commun.
IEEE, 2020, pp. 1–6.

[20] E. S. Lohan, J. Torres-Sospedra, H. Leppäkoski, P. Richter, Z. Peng,
and J. Huerta, “Wi-Fi crowdsourced fingerprinting dataset for indoor
positioning,” Data, vol. 2, no. 4, 2017.

[21] P. Barsocchi, A. Crivello, D. La Rosa, and F. Palumbo, “A multisource
and multivariate dataset for indoor localization methods based on WLAN
and geo-magnetic field fingerprinting,” in 2016 Int. Conf. Indoor
Position. Indoor Navig. (IPIN), 2016, pp. 1–8.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT press,
2016.

[23] D. Romero and G. Leus, “Wideband spectrum sensing from compressed
measurements using spectral prior information,” IEEE Trans. Signal
Process., vol. 61, no. 24, pp. 6232–6246, Dec. 2013.

[24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2009.

[25] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Knowledge Discovery and Data Mining, 1996.

[26] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Pacific-Asia Conf.
Knowl. Discov. Data Min. Springer, 2013, pp. 160–172.

[27] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” ACM SIGMOD
Rec., vol. 28, no. 2, pp. 49–60, 1999.

[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” ACM SIGMOD Rec., vol.
25, no. 2, pp. 103–114, 1996.

[29] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II:
Detection Theory, Prentice-Hall, 1998.

	Introduction
	Problem Formulation
	Spoofing Detection from RSS Features
	Position-change Detection
	Architecture
	Data set
	Training

	Graph Neural Network based Spoofing Detection
	Architecture
	Dataset
	Training

	Performance Evaluation
	Conclusion
	References

